First Interdisciplinary Conference of
The International Society of The Arts,
Mathematics and Architecture

ISAMA 99

Edited by

Nathaniel A. Friedman & Javier Barrallo

eman ta zabal zazu

"

Universidad del Pais Vasco
Euskal Herriko Unibertsitatea
The University of the Basque Country



Published by

Applied Mathematics Department
School of Architecture

The University of the Basque Country
Plaza de Oriati, 2

20009 San Sebastidn — SPAIN

ISBN 84-930669-0-7
Printed and bound in Bilbao by ELKAR

Cover image by Javier Barrallo and Damien M. Jones

The texts of the various papers in this volume were set individually by the authors or under
their supervision. No responsibility is assumed by the Publisher, the Editor and Authors for
any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products,
instructions or ideas contained in the material herein. ~

© The University of the Basque Country, 1999
All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted in any form or by means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior permission of the Publisher.



AN INTRODUCTION TO LATTICES IN
TWELVE-TONE MUSIC

Richard Kurth

University of British Columbia, School of Music
6361 Memorial Road,
'Vancouver, B.C., CANADA V6T 172
' email: rkurth@unixg.ubc.ca

Twelve-tone music offers vital and diverse kinds of musical relationships and musical sense-making. These can
nonetheless be appreciated without direct recourse to twelve-tone rows in particular, Every twelve-tone passage
presents the set of all twelve tones as a collection of smaller discrete subsets, since the various tones group
together in different ways. These collecfions of smaller discrete sets are called "partitions"; they represent
equivalence relations on the collection of twelve tones, and can also be organized into lattices by defining the
"meet" and "join" of any two partitions. The resulting "partition-lattices” can model multiplex musical
relationships within a single passage, or musical continuity in a sequence of twelve-tone passages, by
representing the interaction of various relevant partitions. Partition-lattices stimulate the exploration of listening
strategies for twelve-tone music, and have significant implications for music theory and analysis. They are also
of strictly mathematical interest, as lattices of equivalence relations.

Preliminaries

Every musical tone involves numerous defining characteristics: pitch (frequency), duration, loudness, timbre, and
so forth. Pitch relations between musical tones are the principal organizing factor in all Western music and are the
main focus of the following considerations; henceforth musical tones shall simply be referred to as "pitches," with
other characteristics of individual tones being invoked only where relevant. In Western music, two pitches x and y
are said to be an "octave" apart if their frequency ratio is 2:1. By the seventeenth century a 12-part division of the
octave had become widespread, although a wide variety of tuning systems were used in practice (Barbour 1951,
Blackwood 1985, Lindley and Turner-Smith 1993). Here we generally assume "equal temperament," in which the
2:1 octave is divided into 12 equal "semitones," each corresponding to the "interval" or frequency ratio 212,

The equivalence relation most basic to twelve-tone music, and indeed to all Western music, is "octave
equivalence™ two pitches x and y are said to be members of the same pitch class if their frequency ratio is 27,
where 7 is an integer (positive, negative, or 0). In 12-part equal temperament, the 12 pitch classes (henceforth pcs)
are isomorphic to the integers modulo 12. We adopt the following conventional relation between traditional pc
letternames used by musicians and the integers- modulo 12 (written in hexadecimal notation): C=0,C#=1,D =
2,D#=3,E=4,F=5Fi#=6,G=7,G# =28, A=9, A#= A, B =B. (Givén equal temperament, we also assume
"enharmonic equivalence": C# = Db, D# = Eb, F# = Gb, G# = Ab, A# = Bb, etc.) The unordered set of all 12 pcs,
{0,1,2,3,4,5,6,7,8,9,A,B}, is called the pc aggregate.
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In twelve-tone compositions, a twelve-tone row (a strict serial ordering of the pc aggregate) is used to organize pc
aggregates in various ways. (Given a 12-pc aggregate, there are 12! distinct twelve-tone rows.) Typically the pitch
structures in such compositions are derived from a single row that is subjected to various permutations, the most
common being the 12 transpositions (Tn) and the 12 inversions (In), defined as follows: for any pc x, and for n =
0, 1, ..., 11, Tn(x) = (x+n)mod12 and In(x) = (n-x)mod12. The group structure of the 12 transposition and 12
inversion operations is well-known to music theorists (Starr 1978, Lewin 1987, Morris 1987). Other permutations
are also used by some composers, but they shall not be addressed directly here.

Although twelve-tone rows are strictly ordered in the abstract, they are often presented in musical textures as
partially ordered sets. For instance, an ordered segment from a row may be represented by simultaneous pitches;
likewise, two (or more) ordered segments from a row may be presented concurrently (in "counterpoint™) by
independent voices or instruments. Such compositional practices, and others like them, can make accurate
perception of twelve-tone rows difficult for listeners. The accurate perception of rows is not, in any case, the sole
aesthetic goal of twelve-tone music; moreover, the theoretical ard analytical problems posed by such
compositional practices can be modelled by another sort of equivalence relation.

A (pitch-class) partition is an (unordered) collection of discrete (unordered) subsets of the pc aggregate, called
the membersets of the partition, such that every pc is an element of one and only one memberset. Here partitions
are labelled with boldface lowercase letters; membersets are separated by vertical slashes (| ), and their elements
written (by convention only) in numerical order, e.g. v = |015[234|6AB|789|. That notation is simply a more
compact way of writing, more properly, v = { {0,1,5}, {2,3,4}, {6,A,B}, {7,8,9} }.

In principle, any partition, such as v, could model an infinite number of different twelve-tone textures, which
might in turn be derived, in principal, from any twelve-tone row. Toe model a twelve-tone texture, the pcs in each
of the four (unordered) membersets of v might all share the same value in some relevant musical parameter: for
instance, the pcs in the (unordered) memberset {0,1,5} might all have 'the same attack point, or might be played
by the same instrument, or have the same duration value, dynamic level, etc., regardless of other differences, and
regardless of ordering in any other dimension or parameter.

(a) (b) (e) (d)

Violin 1: | 0 2 6 | 051 | B A 6 | 789 |
Violin 2: | 1 3 7 | 6AB | O 15| 324 |
© Viola: | 5 A 8 | 432 | 9 78 |” aB6 |
Cello: | 4 B 9 | 789 | 24 3 | 510 |

Figure I. Four aggregates projecting v in different ways.

By way of example, the abstract schema in Figure 1 represents a (four-voice) string quartet texture, and shows
four different aggregates (separated by vertical slashes), each projecting v in a different way. Tem}ﬁoral order is
represented on the figure by spacing left-to-right, and simultaneities are vertically aligned; horizontal strata
represent instrumental assignment. Aggregate (a) presents the membersets of v as simultaneities, each one
involving a different selection of three instruments among the four in the quartet; each simultaneity could be
ordered in 3! ways, consequently, aggregate (a) could be derived from (3!}4 = 1,296 different twelve-tone rows.
Aggregate (b) presents each v memberset in a strict order, and in a single instrument; this aggregate can be
derived from only 1 twelve-tone row, but it is not one of rows relevant to aggregate (a). Like (b), aggregate (c)
also presents each v memberset in a strict order and single instrument; (c) can be derived from only 1 twelve-tone
row, distinct from all those relevant to (a) or (b). Aggregate (d) also presents each v memberset in strict order and
single instrument; but because of its four dyadic simultaneities ( {1,A}, {0,B}, {3,8}, and {2,9} ), it can be
derived from (2!)4 = 16 different twelve-tone rows, all distinct from-those relevant to the preceding aggregates.

The format of a partition p, denoted FORMAT(p), simply lists the number of elements in each of its membersets.
For v as defined above, FORMAT(v) = [3333]. For an aggregate of 12 pcs (regardless of temperament), there are
77 different partition formats (see the Appendix for a listing). Twelve-tone music theorists (Starr 1978, Mead
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1988, Morris and Alegant 1988, Alegant 1993, Kurth 1993 and 1996) have examined some formal properties of
pe partitions, but partitions have mostly been used "practically,” to model and analyze musical textures. The one-
to-one relation between partitions and equivalence relations on the aggregate has gone unnoted and unexplored in
the music-theoretical literature, largely because music analysts are uncomfortable suggesting that two (or more)
different pcs are "equivalent." Nonetheless, it is easily shown that there are precisely 4,213,597 distinct (twelve-
tone) pc partitions. Given the one-to-one correspondence between partitions and equivalence relations, there will
be an equal number of equivalence relations on any set of 12 elements. A formula and a table enumerating the
number of distinct partitions for each of the 77 formats is provided in the Appendix.

A partition p isa subpartition of a partition q (henceforth p  q) if every memberset of p is a subset of some
memberset of q. Any collection of partitions can be partially ordered under this inclusion relation. Partitions can
also be organized into lattices, as will be seen shortly. '

Two partition formats have unique representatives which will be of use later on: the "conjunct" partition, conj =
|0123456789AB, and the "disjunct" partition, disj = 0]11213]415|6/7|8|9|A|B|. conj is the "greatest" partition of the
aggregate, and every partition is a subpartition of conj; likewise, disj is the "least" partition of the aggregate, and
disj is a subpartition of every partition.

Partition meet and partition join

In order to construct lattices from partitions later on, we define the meet and join of any two partitions p and q.
We shall not prove here that partition meet and join as defined, are partitions, but that fact will be corroborated by
selected examples. '

Definition (partition meet). Let p and q be (pc) partitions, lef x and y be any two pes. Then x and y are in the
same memberset of p A q, the meet of p and g, if and only if x and y are in the same memberset of p and also in
the same memberset of q. Equally, let P and Q be the equivalence relations represented by p and q respectively.
Then the partition meet p A q corresponds with the equivalence relation M, where xMy if and only if xPy and

xQy. .

Definition (partition join). Let p and q be (pc) partitions, let x and y be any two pcs. Then x and y are in the same
memberset of p v q, the join of p and g, if x and y are in the same memberset of p or if x and y are in the same
memberset of q. Equally, let P and Q be the equivalence relations represented by p and q respectively. Then the
partition join p v q corresponds with the-equivalence relation J, where xJy if xPy or if xQy.

Example. Let v =|015]234/6AB|789], as above, and let w = [045123|67 B|89A|. Then v A w = |05|123}4|6B[7|89]A
and v v w =[012345|6789AB|.

The example illustrates that for any two partitions, pandq,pAqcP<P VG, andpaqcqcpvy.

As defined, partition meet and join are commutative and also associative, although those facts shall not be proven
here. The following lemmas are also given without proof.

v

Lemma. The following three conditions are equivalent: (1) pcq; Q) pAq=p; G)PVvq=q.

Lemma. The join p v q is the least upper bound of {p, q}. That is, if r is a superpartition of both p and q, then p
v q c r. Similarly, the meet p A q is the greatest lower bound of {p, q}. That is, if s is a subpartition of both p
andq,thenscpAq.

If p A q = disj, we shall say that p and q are disjoint. If p v q = conj, we shall say that p and q are conjoint. If p
and q are disjoint and conjoint, we shall say that they are conjugates. Every partition has at least one disjoint
partition (disj), and at least one conjoint partition (conj). For any partition p, the set of its conjugate partitions is
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the intersection of the set of its disjoint partitions with the set of its conjoint partitions. Only conj and disj have
unique conjugate partitions, disj and conj respectively.

Partition lattices
Without developing-all the necessary mathematical formalities here, we simply offer the following definition.

Definition (partition lattice). Let L= {a, b, ¢, ... } be a collection of (pc) partitions. L is a partition lattice if for
everypandq e L, the meet p A q € Land the joinpv q e L.

Example. Figure 2 shows the (four-part) pre-compositional "array" for the first 12 measures of Milton Babbitt's

Semz-Szmple Variations (1956), a short composition for piano solo. A musical score for the passage will be shown
in the conference presentation, and a number of observations made at that time about different listening strategies
relevant to the music. Figure 2 indicates, for the present, that the passage involves four voices, or strata of relative
pitch height, here labelled "Soprano” (highest), "Alto" (mid-high), "Tenor" (mid-low), and "Bass" (lowest). The
array abstracts properties of the actual music, and vertical alignment does not represent simultaneity in this case.
But the array shows how each voice presents a different strict orderi mc of the 12 pes, as four consecutive ordered
trichords, so that the entire texture presents four different partitions: r = |045[123|6AB|789| and s =
|015]234|67B|89A| are each presented "horizontally," in two different ways, by aggregates in two individual
voices; meanwhile v and w (already encountered in earlier examples), are each presented twice by aggregates
generated "column-wise" by all four voices together. All four partitions have the same format, [3333]. Readers
may confirm for themselves that r and s map onto one another under I5 and 111 (as defined above), and are each
_ invariant (map onto themselves) under TO and T6; similarly, v and w map onto one another under 15 and T6, and
invariant under TO and I11.

(Soprano) | <A,6,B> | <8,7,9> | <3,1,2> | <5,0,4> | r

(Alto) | <2,4,3> | <0,5,1> | <7,B,6> | <9,A,8> | s

(Tenor) | <9,7,8> | <B,6,A> | <4,0,5> | <2,1,3> | r

(Bass) | <1,5,0> | <3,4,2> | <8,A,9> | <6,B,7> | s
¥ v w w

Figure 2. Four-part array for Milton Babbitt's "Semi-Simple Variations," mm. [-12.

max

AN

/\/\/\/\
\/\/\/\/

N\

min
Figure 3. Partition lattice L1 generated fromr, s, v, and w.

Figure 3 offers a two-dimensional representation of the 14-element partition lattice L1 that can be generated from
the four array partitions, r, s, v, and w. The joins ji and meets mi (for i = 1, 2, 3, 4) are not written out in detail
here, but the greatest and least partitions, labelled max and min on the figure, were already encountered in
Example 1: max =v v w =|012345[6789AB| =r v s, and min =v A w =(05|1[23/4/6B|7|89]A| = r ~'s. In line.with
‘the” transformational properties just observed above, the twelve-tone operations TO, T6, I5, and 111 are
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automorphisms on L1. The cyclic permutations o1 = (14), 02 = (7A), and 03 = (14)(7A) are also automorphisms
on L1, since o1(r)=v, o2(r) = w, and 93(r) =s, efc. ‘

Partition lattices and listening strategies

The first 12 measures of Babbitt's Semi-Simple Variations can be explored further, to illustrate. the usefulness of
partition lattices for musical analysis. First we note that the array partitions r, s, v, and w are all very relevant to a
listening experience of the passage. (The conference presentation will demonstrate, using the musical score and an
audio recording.) The partitions max and min are much less relevant, however, and the joins ji and meets mi do
not provide much musical insight into the passage. Here we shall explore some "ad hoc" partitions that offer
compelling alternative listening strategies for sections of the music. These partitions are at some odds with the
four partitions of the pre-compositional array, and what follows shows that partition lattices can be used to
explore how "ad hoc" partitions and listening strategies interact with the pre-compositional array partitions.

The "dyadic" partition d =]03|19[2A}4657|8B}, with format [222222], offers a rewarding listening strategy for the
first 6 measures (as will be explored and demonstrated in the conference presentation). It also has the property of
being a conjugate for all of the array partitions, r, s, v, and w. That fact is of musical interest. On the one hand d
"integrates" the entire texture, in the sense that its join with each of the array partitions is conj; and on the other
hand d also "decomposes" the entire texture, in the sense that its meet with each of the array partitions is disj. As
a result, d can be said to "completely synthesize" and also to "completely analyze" the texture in mm. 1-6. The
conjugate properties of d are also of theoretical interest, since they lead to four small but relevant partition
lattices: {d, r, conj, disj}, {d, s, conj, disj}, {d, v, conj, disj}, and {d, w, conj, disj}.

conj= [0123456789AB]. cond

c=  |02357A|14689B| -

x=  |0235]14/689B|7A| nax

d=  |03[192Al46/578B| / \t/// \

r=  |045]123/6AB[789| i

s= [015[234/67B|89A| - @ =

y= [0235[1[4/689B[7|A| ' v \ / :
min=[05]1123/4{6B[7|89/A] \ T

e= 03]1[214(56/7/9|8 BJA al /

disj=  [0[1[21314I5/6/7189lA/B] | T~ :

Figure 4. Partition lattice L2 generated from d, v, and s.

Figure 4 explores how d interacts only with the 2 "horizontal" array partitions, r and s, and ‘represents the
resulting partition lattice, L2. The specific contents of all 11 partitions are listed on the figure. Aside from the
array partitions r and s, the partitions ¢, d, and e are more relevant to the listening experience (in ways to be
demonstrated at the conference presentation) than any other partitions in. the lattice; the labels for these five
partitions are enclosed in boxes for visual emphasis. The graphic representation of lattice L2 helps show how ¢, d,
e, are all at some odds with r and s. In particular, ¢ = d v min and e = d A max result from the join and meet
interaction of d with max =r v s and min = r A s, so ¢ and e mediate between d and the interaction of its two
conjugates, r and s. The inversion operation I11 is an automorphism on L2; r and s map to one another under I11,
while every other partition in the lattice is invariant under 111.

We can explore in a similar way how d interacts with the two “columnar” array partitions, v and w. In fact, the
resulting lattice, L3, is otherwise identical to lattice L2 except for substituting v and w in place of r and s on
Figure 4, Once again, 111 is an automorphism on L3, because every partition in the lattice, including v and w, is
invariant under 111, L3 and L2 are isographic, but they are not isomorphic; it appears to be impossible to find a
permutation that will not only map r and s to v and w (the corresponding pairs of partitions of format [3333]) but
that will also map d (the only partition with format [222222]) to itself. '
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Lattices L2 and L3 explored the interaction of d with the "horizontal" array partitions and "columnar" array
partitions respectively, in order to examine in detail how d, as a listening strategy, engages the texture in mm. 1-6
of Semi-Simple Variations. Lattices can also be used to model musical continuities in the composition. For
instance, while the dyadic partition d is a compelling listening strategy for mm. 1-6, the "trichordal” partition t =
|048[126[37B|59A|, with format [3333], likewise reveals aspects of mm. 7-12, and the partition z =
[0B[1234|56]789A, with format [2244], is a useful listening strategy for mm. 13-18. Figure 5 shows the lattice L4
generated from d, t, and z, which provides insight into how these three partitions and their corresponding listening
strategies interact over the course of mm. 1-18. The musical relevance of the partitions in L4, including the meet
z' and the join d' will be demonstrated in the conference presentation.

o) (1]

Figure 5. Partition lattice 1.4 generated from d, t, and z.

Appendix '

Enumeration. For any aggregate containing 12 distinct pcs, there are a total of 4,213,597 distinct pe partitions.
Equivalently, there are 4,213,597 equivalence relation$ on any set containing 12 distinct elements. In particular,
for each FORMAT = [abc...mi], the corresponding number of distinct partitions (or equivalence relations) is
X/R, where X and R are calculated as follows:

X =<12,0> x <12-0,b> x <12-6-b,c> x ... x <12-g-b-c-...-m,1>.
R=A!xB!xClx..xM! xN!

In the formula for X, <n,k> is the binomial coefficient n!/(k!(n-k)!). In the formula for R, A is the number of
instances of memberset size a in the format, B is the number of instances of memberset size &, and so forth. The
product X counts some partitions more than once, if any memberset size occuirs more than once in the format. R
offSets this problem by calculating the precise number of such counting redundancies. (This formula corrects the
erroneous formula given in Alegant 1993.) '

Table 1 calculates these values. Column A gives the number of distinct partitions for each format, and determines
that their total sum is 4,213,597.

)
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Format A B Format A B
[C] 1 39,916,800 | | [11244] 103,950 3,742,200
: [12225] 83,160 1,995,840
“[1B] 12 43,545,600 | | [11334] 138,600 3,326.400
[2A] 66 « 23,950,080 [12234] 415,800 4,989,600
139] 220 17,740,800 | | [12333] - 184,800 1,478,400
(48] 495 14,968,800 | | [22224] 51,975 311,850
157] , 792 13,685,760 | | [22233] 138,600 554,400
[66] 462 6,652,800
: o [111117] 792 570,240
[11A] 66 23,950,080 | | [111126] 13,860 1,663,200
[129] 660 | . 26,611,200 | | [111135] 27,720 1,330,560
[138] 1.980 © 19,958,400 [111144] 17.325 623,700
[228] 1,485 7,484,400 | | [111225] 83,160 1,995,840
[147] 3,960 17,107,200 | | [111234] 277,200 3,326,400
[156] 5,544 15,966,720 | | [111333] 61,600 492,800
[237] 7,920 11,404,800 | | [112224] . 207,900 1,247,400
[246] 13,860 9,979,200 | | [112233] 415,800 1,663,200
[255] 8,316 © 4,790,016 | | [122223] 207,900 415,800
[336] 9,240 4,435,200 | | [222222] 10,3957 10,395
[345] . 27,720 |’ 7,983,360 )
[444] 5775 | . 1,247,400 [1111116] 924 110,880
' [1111125] 16,632 399,168
[1119] 220 8,870,400 | | [1111134] 27,720 332,640
[1128] 2,970 14,968,800 [1111224] 103,950 623,700
[1137] 7,920 | - 11,404,800 | | [1111233] 138,600 554,400
[1227] 11,880 8,553,600 | | [1112223] 277,200 554,400
[1146] 13,860 . 9,979,200 | | [1122222] 62,370 62,370
[1155] 8,316 4,790,016 | .
[1236] 55,440 13,303,600 [11111115] 792 19,008
[2226] 13,860 1,663,200 [11111124] 13,860 83,160
[1245) 83,160 11,975,040 | | [11111133] 9,240 36,960
[1335] 55,440 5,322,240 | | [11111223] 83,160 166.320
[1344] 69,300 | 4,989,600 [F1112222] 51,975 51,975
[2235] 83,160 -3,991,680
[2244] 51,975 1,871,100 [111111114] 495 2,970
[2334] 138,600 3,326,400 | | [111111123] T 7,920 15,840
[3333] 15,400 246,400 [111111222] 13,860 13,860
[11118] 495 2,494,800 | | [1111111113] 220 440
[11127] 7,920 5,702,400 [1111111122] 1,485 1,485
[11136] 18,480 -4,435200
[11226] 41,580 4,989,600 | | [11111111112] 66 66
[11145] 27,720 3,991,680
[11235] 166,320 7,983,360 [111111111111] 1 |
...continued... ...continued.. ...continued.. Totals 4,213,597 479,001,600 = 12!

Table |. Enumerating the distinct partitions for each of the 77 formats.

Column B on Table 1 allows us to confirm the numbers generated in column A, by determining the number of
permutations with cycle-lengths corresponding to the partition formats. Each partition memberset is an unordered
set; but its contents could be ordered as a permutation cycle in (j-1)! different ways, where j is the size of the
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memberset. Consequently, for FORMAT = [abc ... mn] there are:
X/R x (@-1)! x (5-1)! x (¢-1)! x ... (m-1)! x (n-1)!

different permutations with the corresponding cycle lengths. Column C calculates these values, and determines
that their sum over all 77 formats is 479,001,600 = 12! This is the total number of possible permutations of 12
~ elements, so it confirms the X/R values in column A.
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